Transport measurement of Andreev bound states in a Kondo-correlated quantum dot.

نویسندگان

  • Bum-Kyu Kim
  • Ye-Hwan Ahn
  • Ju-Jin Kim
  • Mahn-Soo Choi
  • Myung-Ho Bae
  • Kicheon Kang
  • Jong Soo Lim
  • Rosa López
  • Nam Kim
چکیده

We report nonequilibrium transport measurements of gate-tunable Andreev bound states in a carbon nanotube quantum dot coupled to two superconducting leads. In particular, we observe clear features of two types of Kondo ridges, which can be understood in terms of the interplay between the Kondo effect and superconductivity. In the first type (type I), the coupling is strong and the Kondo effect is dominant. Levels of the Andreev bound states display anticrossing in the middle of the ridge. On the other hand, crossing of the two Andreev bound states is shown in the second type (type II) together with the 0-π transition of the Josephson junction. Our scenario is well understood in terms of only a single dimensionless parameter, k(B)T(K)(min)/Δ, where T(K)(min) and Δ are the minimum Kondo temperature of a ridge and the superconducting order parameter, respectively. Our observation is consistent with measurements of the critical current, and is supported by numerical renormalization group calculations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fano-Andreev effect in a T-shape double quantum dot in the Kondo regime.

In the present work, we investigate the electronic transport through a T-shape double quantum dot system coupled to two normal leads and to one superconducting lead. We explore the interplay between Kondo and Andreev states due to proximity effects. We find that Kondo resonance is modified by the Andreev bound states, which manifest through Fano antiresonances in the local density of states of ...

متن کامل

Josephson versus Kondo coupling in a Quantum Dot Connected to Two Superconductors

We apply a Gutzwiller-like variational technique to study Josephson conduction across a quantum dot with an odd number of electrons connected to two superconducting leads. Our method projects out all states on the dot but the Kondo singlet and is valid when Kondo correlations are dominant and no Andreev bound states localized at the dot are available for Kondo screening. In these conditions sup...

متن کامل

Nonequilibrium transport through a spinful quantum dot with superconducting leads.

We study the nonlinear cotunneling current through a spinful quantum dot contacted by two superconducting leads. Applying a general nonequilibrium Green function formalism to an effective Kondo model, we study the rich variation in the IV characteristics with varying asymmetry in the tunnel coupling to source and drain electrodes. The current is found to be carried, respectively, by multiple An...

متن کامل

Resonant Andreev Tunneling in Strongly Interacting Quantum Dots

We study resonant Andreev tunneling through a strongly interacting quantum dot connected to a normal and to a superconducting lead. We obtain a formula for the Andreev current and apply it to discuss the linear and non-linear transport in the nonperturbative regime, where the effects of the Kondo resonance on the two particle tunneling arise. In particular we notice an enhancement of the Kondo ...

متن کامل

Josephson current through a correlated quantum level : Andreev states and π junction behavior

The Josephson transport and the electronic properties of a quantum dot characterized by a single level coupled to superconducting leads is analyzed. Different approximations are used and compared: the mean field approximation , the second-order perturbation theory in the Coulomb interaction and the exact diagonalization in the zero band-width limit. The system exhibits a rich behavior as a func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 110 7  شماره 

صفحات  -

تاریخ انتشار 2013